
NUMERICAL INVESTIGATION OF THE THREE-DIMENSIONAL LAMINAR 

BOUNDARY LAYER WITH COUPLED HEAT TRANSFER 

V. I. Zinchenko and O. P. Fedorova UDC 533.526 + 536.24 

The authors examine heating of a spherically blunted cone washed by a flow in chemical 
equilibrium or a supersonic air flow, allowing for interaction of the gas processes with the 
surface, i.e., the coupled form of the problem. It is difficult to use a decoupled formula- 
tion of the problem, taking the heat-transfer coefficient from the gas phase to calculate the 
heat conduction in the body, since there are no reliable data for ~ for three-dimensional 
flow over nonisothermal surfaces. 

i. Following [I, 2] we shall seek the characteristics of the coupled heat transfer by 
solving the system of equations of the three-dimensional boundary layer and the unsteady 
heat-conduction equation in the body shell, with the appropriate boundary and initial condi- 
tions. For the perfect gas model the system of equations of the laminar three-dimensional 
boundary layer has been given in [3]. For associated air, under the hypothesis of a binary 
mixture it is easy to show that the element concentrations for a nonablating wall are constant 
in the boundary layer and equal to their values in the incident stream. The calculation of 
the equilibrium state can proceed autonomously and the transfer coefficients and the molecular 
weight of the mixture can be approximated as functions of p and T or of p and h [4], and can 
then be used in integration of the system of boundary layer equations. 

In the general case of multicomponent diffusion the elementary composition varies in the 
boundary layer [5], and this must be accounted for in solving specific problems. For a 
dissociated air mixture, when the flow quantities have been obtained, the assumption that the 
elementary composition does not change in the boundary layer can be used with quite good 
accuracy. 

In accordance with [6], the boundary layer on the spherical part of the body in the 
coordinate system fixed at the stagnation point was calculated for the symmetric case, and 
then we converted to a semigeodesic coordinate system fixed with the body symmetry axis. In 
Dorodnitsyn-Lees variables, after introducing the stream functions f and ~, the system of 
equations of the three-dimensional boundary layer has the form 

g + (1.1) 

a . aT~k ~ - 0~ ~I (7o aT) 

o(,o, ( (%_;]) _.o, (_o. o,o,) 
-~+7~I I---~ ~ + -~e o) +(aJ+a3~ )~ =a I og o~o~] +~ ~N 0n~ " (1.3) 

Assuming that the process is one-dimensional we write the unsteady heat-conduction 
equation in the body material in the orthogonal semigeodesic coordinate system as 

ao 1 a FHlrln a~] 7n-lJ 
YiP 3~: irIlr I an 1 (1.4) 

The boundary and initial conditions are as follows: 

F~(~, ~, oo) = i ,  ~ (~ ,  G, oo) = ~, g ( L  n, o o ) =  i ,  ( i . 5 )  

(~, q, o) = o, ~ (~, ~, o) = o, /(E, h, O) = q~ (~, ~, O) = O; 

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 
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x ,r, u o o $  = - (%) (z ,  0); 

On Z T, = 0 o r  0 z,  = 0 , ,  0 (0,  n l )  ----- 0u. ( 1 . 7 )  

Here ~ is the dimensionless path length, calculated from the symmetry axis; 7, an angle 
n 

Uerw~ 
calculated from the windward side in the body symmetry plane, in deg; and ~ =-~- pdn, n I = 

0 
n --R--~' are directed along the normal to the exterior profile on the different sides; g=H/ 

Heo,U = 0//0~ --- u/ue, o = 0~/a~ = ~/~e are the dimensionless enthalpy and velocity components in 
the longitudinal and circumferential directions; 

2 S 9e~eUer2wd~ o e 
0 

0~1 Pe~eUe r~w ' 0~2 ~ Ue-rw 0~1' 

%olo 1% o(! ) a 3  - 0~1 q- o u u 2 : 3 0 ~ l  pe~teUerwd~ , 
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~ ear~ 

~ ~ o~ I { R N )~/2 ~ r 
are dimensionless coefficients and parameters; qw=~'~-~w~-~|wkV,n~eo~, ~ H~0' O=~.,,. 

t 
=--, are the 

t. 

2 C 
RNPl. I., Vm=~2He0, RN, L are the charac- dimensionless heat flux, temperature and time; t, %1* 

teristic time and velocity, radius of blunting, and shell thickness; H 1 = 1--kn,:r I = rw-- 
n I cos 0 are Lam~ coefficients (k is the curvature of the generator, 0 the slope angle of the 
body generator to the symmetry axis); the subscripts e, e0 and w denote values at the outer 
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edge of the boundary layer, at the outer edge at the stagnation point, and on the body sur- 
face, and the subscripts I, * are the characteristics of the solid phase and characteristic 
values. 

For the perfect gas model as the temperature T, it is convenient to use Te0 , and then 

H eo V VmPeo~eoRN " -- ~eo VmPeoRN 
=VHePr~-~-., Re= The parameter S = ~RePr%e0/s is used for coupled 

h e a t - t r a n s f e r  problems. 

For the equilibrium air model in writing the system of equations and the boundary condi- 
tion (1.6) we assume a Lewis number of I. The equation of state and p# were taken from [4], 
At the outer edge of the boundary layer we assumed ths conditions from the inviscid flow 
calculations of [7] and approximated with the help of two-dimensional matching splines [8]. 

The difference schemes for the computed regions in the gas phase and in the body were 
obtained with the help of the iteration-interpolation method (IIM) [9], with an approximation 
error of O(A~) 2 + O(A~) + O(A~), O(Anl) 2 + O(A~). 

To solve coupled problems requires multiple calculation of the system of equations of 
the three-dimensional boundary layer, and it is therefore important to optimize to chosen 
schemes and to accelerate the convergence in practice we used the technique of [I0] to analyze 
a number of difference schemes and IIM schemes comparatively, and we showed that the IMM 
schemes have second-order convergence rate. The method of calculation is associated with the 
quasisteady nature of the processes in the gas phase, and consists of sequential solution of 
the system of equations in the gas phase and the heat-conduction equation in the body. In 
integrating Eqs. (i.I)-(1.3) with respect to N as initial conditions we used the solution of 
the asymptotic system of equations written in the vicinity of the flow symmetry plane. 

In the numerical calculations made we investigated assigning the angle of attack X and 
the coupling parameter S, and we analyzed the influence of the nonisothermal nature of the 
surface temperature on the heat flux and the heat-transfer coefficient. 

2. We now consider the results of solving the boundary problem of Eqs. (I.I)-(1.3), 
(1.5), and (1.6) for the perfect gas model and the Sutherland law for # in the case of a 
given surface temperature. Figure 1 shows the distributions of dimensionless heat flux qw 

and friction stress ~w = ~w [(au/OnI~ ~ + (8~/Onlw) 2] ]/r~/(peoV~ ) along the generators of the conical 
part at different meridional sections N. Here X = i0~ 7 = !, 4, gw = 0w = 0.05 and the body 
geometry (the semivertex angle ~ = I0 ~ and M~ are taken from [3]. Curves 1-4 correspond to 

= 0, ~/2, 2.27, ~, respectively, and curves I' were obtained in the vicinity of the plane 
of symmetry on the windward side ~ = 0 for the same governing parameters of the problem, 
apart from X = 20~ As can be seen from Fig. i, the maximum values of heat flux and friction 
stress are reached on the flow symmetry line y = 0, where the pressure is a maximum. Because 
of the secondary stagnation of the flow on the windward side of the conical surface the 
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pressure along the generator increases, leading to an increase of qw and rw and depend sub- 
stantially on the angle of attack. 

Along the meridional section fi = n/2 the heat flux is close to the calculated value 
qw(f) (shown by crosses) obtained for axisymmetric flow over the same cone. Hence it follows 
that on a given meridian for the value of X used the divergence of the streamlines at the 
outer edge of the boundary layer and near the body surface does not play a large part in 
determining the local heat flux, as was discovered experimentally in [ii]. 

In the vicinity of the line of flow divergence it is interesting to compare qw with the 
results of calculations of axisymmetric flow for the same local angles of attack. In this 
case X = O, ~ = 20 ~ , and ~ = 30 ~ for the broken curves I and I', respectively. The pressure 
at the outer edge is different because of overflow of the gas in the circumferential direction 
for X ~ 0 with increase of angle of attack there is an increased pressure gradient in the 
circumferential direction, leading to an increased intensity of the secondary flows and an 
increased error in the axisymmetric calculation for the equivalent cone. 

Calculations performed in the vicinity of the symmetry plane on the leeward side have 
shown that, beginning with certain values of ~, corresponding to the appearance of the maximum 
of vector Pe(~) became negative, which is typical of a change of direction of the flow within 
the boundary layer with respect to the symmetry plane. The change of flow direction leads to 
flow rearrangement and to formation of a region of flow spreading, which may be accompanied, 
for increased angle of attack, by an increase of heat flux and friction stress. The lines 5 
on Fig. i show the distributions of ~w(~),~w(~) for ~ = n for the parameters of [ii] (M~ = 5, 
X = 20, 9*, ~ = 9*), which confirms what has been said above. This kind of behavior of 
qw(f) for ~ = ~ was noted in a number of experimental studies, and a calculation performed 
according to the data of [12] has shown agreement between the theoretical and experimental 
results. We shall consider the influence of assigning an isothermal surface temperature on 

st q~, (L ~) [~ - %0] the flow characteristics in the boundary layer. Figure 2 shows the ratio ~0 = qw0[ i-0w(~,~)] 

along the coordinate f for various values of ~ (curves 2, 4 for ~ = O; 5 and 6 for ~ = ~/2). 
Here qw0, 0w0 correspond to values at the stagnation point, curves 2 and 5 were obtained for 
X = 20~ and curves 4 and 6 for X = 5*. The solid lines correspond to 8 w = 0.05, and the 
broken lines to 8 w = 0.5. The other governing parameters coincide with the data of Fig, i. 
It can be seen that with increase of 8 w by an order the value of St/St 0 decreases in all the 
meridional sections and there is a tendency towards an increased influence of the change of 
the temperature factor on the relative heat flux for an increase of X. The data of [13] are 
shown by the points at ~ =0, X = 20~ Ow ~ 0.248, according to which in the vicinity of the 
line of spreading 

I St 0"8p~o~m Oe@]/Pr ~ --Ow 
/ r ~o,8 (2 .1)  

 o,o 
[ t - % o l  

For the model of an ideal gas: 

~--I u 

As follows from Figs. i and 2 the heat flux distribution on the wetted surface is com- 
plex, and is determined by the formation Tw(~, N) and the temperature fields in the body 
material in solving the heating problem. The results of solving the coupled problem are 

shown in Fig. 3 for Oa = 0.248, Tee = 1210 K, ~-ePr^ ~e~ =3.187. (the other parameters are the 
hi* 

same as for Fig. I). The thermophysical characteristics of the material were assumed con- 
stant, L/R x = 0.1, O0/an1(z, L/Rx) = 0. The dependences qw(f, N) and 8w(f, N) were found at 
different times r, the solid curves correspond to r = 0, and the broken curves correspond to 
r = 0.046, curves 1-3 being for ~ = 0, 4/2, 2.27. 

For the times indicated it is interesting to note the increase of heat flux, more notice- 
able in the region with coupling of the spherical and conical part of the body. The increase 
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of q~(~, N) stems from the fact that at times close to the initial time 0 w changes from 0 i = 
const to a nonisothermal distribution 0w(f, N), which in turn leads to an increase of the 
heat-transfer coefficient to the body and an increased heat flux. For a further increase of 
T w because of the decrease of the temperature drop To--Tw(~, N), the value of qw(f, ~) 
begins to decrease. 

Figure 4 shows the results of solving the coupled problem in the most thermally stressed 
region for N = O, which illustrates the above behavior of qw. The calculation parameters were 
chosen to be the same as for Fig. 3, apart form X = 20~ and curves 1-4 correspond to r = 0, 
0.01, 0.051, 0o108. 

The influence of the nonisothermal nature of the surface temperature on the heat-trans- 
fer coefficient is shown in Fig. 2, which shows a representation of the numerical solution 
given in Fig. 4 in the form of the ratio St/St 0 for r = 0.01 and 0 (curves I and 3). It can 
be seen that for the constant and variables surface temperatures the values of St/St 0 differ 
substantially, while for the isothermal surface and a parametric set of data the difference 
in St/St 0 does not exceed 15%. 

The nonmonotonic behavior of qw(~) stemming from the nonisothermal surface temperature 
distribution can be seen from the analytical solution in the vicinity of the plane of sym- 
metry, obtained with the help of the method of successive approximations [14] for variable 
temperature 0~(f): 

q~(~) ~ Pege%6g(~*) B(~,) ( ( @~ )} t--gu,(~) 
qw(~*) = 2T~du e =~,Peo~eoa~g ($)= B(~) (1 - -~ )  + 2Pr6g(~)aB(~)~ I 2B(~) t -- gw(~,)' 

q)l = 0.068 + 0,091A, B (~) = 0.068 + 0.057A, (2 .2)  
Oln(t--&,) l - - P r [  ue "~2 f l  g,,; \o.5 

= exp ~ 2(  We {* " (2 .3)  
"-7 ' ~ e ~ P e 4  " 

[!: (/~ (t--  tp) mex p d~ Ed~ ccraEexp [3B~)d ~ 6g (~) = kPr B (~) [3 B--~ 

Here ~, is the coordinate of the stagnation point, and for 6g(~,), expanding the functions 
in the vicinity of the stagnation point, we can write 

6g (;,) = 1 B (~,) = 0.068 + 0,057g% ~ n~ (~,)'/ ' 
Pr B ( ~ . ) I  + R2 (~.)] 

(RI (~ . ) ,  R2(~.  ) a r e  t he  p r i n c i p a l  r a d i i  o f  c u r v a t u r e  a t  t he  s t a g n a t i o n  p o i n t ) .  I n  the  case  
of  s p h e r i c a l  b l u n t i n g  f o r  ~ .  _< ~ < ~1, where  ~1 c o r r e s p o n d s  to  t he  c o o r d i n a t e  o f  t r a n s i t i o n  
to the  c o n i c a l  p a r t  o f  t he  body,  

and for this region 

[~  ( l - - * ) m e x  n 6 (b = / .  } -PDT;Y [3~-7~ d~) 

sin ~, 
me = Ue sin (~-- ~,)' 

(D~ -1 
dg Lain exp 9---~d~ tg 2 ~ tg 2 (2.4) 

As follows from analysis of Eq. (2.2), and also from the results of the numerical solutions, 
the second term in Eq. (2.2), associated with agw/af, can make an appreciable contribution to 
the value of the heat-transfer coefficient for a nonisothermal surface. In the region of 
positive values of agw/a ~ the ratio St/St 0 decreases, and for negative values it increases 
compared with the isothermal case. This can lead to a decrease of 0 w in regions where aow/ 
af < o, in calculating the temperature field in the body using the heat-transfer coefficient 
from the gas phase, as found for the isothermal surface~ 
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A comparison of the results of solving the problem in the exact formulation (solid 
curves), allowing for coupled heat transfer, with the results of solving the problem in the 
decoupled formulation is shown in Figs. 4 and 5. Here the broken curves denote the solution 
of the heat-conduction equation with a given heat flux from the gas phase in the form qw(~) = 

q~(D ~ 
q-~-~.)qw(~,), where qw(~) /qm(~,) is taken from Eq. (2.2), and for qw((*) we use the well-known 

formula [15], written for a perfect gas. The dot-dash curves were obtained for the case when 
we neglect terms with agw/a ( in Eqs. (2.2)-(2.4), i.e., fl = 0. The curves with the crosses 

were found for a given heat flux from the gas phase in the form q~(~) = StC~)T where the S t  ~ ~ w o  , 

ratio of St(~)/St 0 was taken from Eq. (2.1). 

Figure 4 compares the different approaches for ~ = 0.108 and Fig. 5 shows the dynamics 
of the variation of 0 w as a function of time at various sections along the generators (the 
curves are I) f = 1.41, 2) f = 5.01). 

It follows from a comparison of the curves of 0w(f) in the region adjacent to the spheri- 
cal blunting, where the values of the derivatives a#w/a ~ are substantial, that one should 
take into account the contribution of the local derivative and should also allow for the 
prehistory of the development of the thermal boundary layer. For the section of the conical 
surface where the flow characteristics vary only slightly, with the decoupled method of 
solving the problem we should neglect the term with agw/O f in the formula for the heat- 
transfer coefficient. In this case we have good agreement with the exact solution when 
St/St 0 is assigned from Eq. (2.1), which corresponds to assigning the heat-transfer coeffi- 
cient from the gas phase for the isothermal surface. 

We note that for large times r with the given adiabatic condition on the inner wall of 
the shell the temperature across the shell is equalized, and for a small value of the parame- 
ter r a the value of 8 w becomes close to the temperature of the adiabatic surface, which can 
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be estimated beforehand. We shall consider further the results of calculating the boundary 
problem of Eqs. (1.1)-(1.7) with typical conditions of motion for dissociated air. 

Figure 6 shows the distribution of heat flux qw and surface temperature T w on the wind- 
ward side of the cone ~ = 0 at various times (curve ! is for t = 2 sec, curve 2 is for 
t = 0). The calculations were performed for RN = 0.I m, L/RN = 0.i, TwH = 350 K. On the 
inner wall of the shell made of graphite, we imposed the adiabatic condition, and the thermo- 
physical characteristic of the material were taken from [16]. The solid curves correspond to 
X = I0~ and the broken curves to X = 20~ 

For the times examined the heat flux values increase as the height decreases because of 
increased density of air in the incident flow, and here for the motion with X = 20~ the value 
of qw is increased appreciably compared with X = i0~ which leads in the first case to large 
value of T w. The form of the distribution of Tw(f) around the body is due to the behavior of 
the pressure at the outer edge of the boundary layer for the different angles of attack. We 
correlated the present results, and also results obtained in flight with constant stagnation 
parameters in the form of the ratio 

Sto q~o [ l  - -  g~  (~, ~)] �9 

For the data of Fig. 6 the enthalpy factor is small and varies in the range 0.011 to 0.030. 
Here the ratios St/St 0 for the constant initial and the variable ambient temperatures are 
close, and this also follows from analysis of the analytical solution obtained. With a 
considerable increase of surface temperature the values of St/St 0 at different times can 
differ appreciably in the region adjacent to fl. Therefore, for such conditions, in solving 
the problem of heating in the decoupled formation with assigned flux or heat-transfer coeffi- 
cient from the gas phase, we must take account of the nonisothermal distribution of surface 
temperature along the generator in this region. For an increase of in the region where the 
flow characteristics vary only slightly we can use the heat-transfer coefficient found for 
the isothermal body surface. 
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SPECTRAL CHARACTERISTICS OF TWO-DIMENSIONAL 
TURBULENT CONVECTION IN A VERTICAL SLOT 

V. A. Barannikov, P. G. Frik, and V. G. Shaidurov UDC 532.517.4 

The spatial spectra of two-dimensional turbulent convection are obtained in [i]: the 
velocity fluctuation energy in a developed turbulentconvective flow follows the law E(k) - 
k-n/s while the temperature fluctuation energy follows ET(k ) k -7/5. The possibility of 
realizing turbulent flow with such spectral dependences in a vertical slot with heat insulated 
boundaries is shown there. The energy distribution over the spectrum depends substantially 
on the heat elimination conditions on the slot side walls. Flow in a slot with ideally heat 
conductive walls is examined in this paper. The exponential realization of plane turbulent 
flow in a Hele-Shaw convective cell heated from below which is formed by plates conducting 
heat well with a linear temperature distribution along the height is described. 

I. Incompressible viscous fluid flow is considered in a plane vertical layer of thickness 
d with the characteristic dimension 2 >> d (Fig. i), with boundaries of infinite heat conduc- 
tivity and the vertical temperature gradient aT/0y = -a. The motion is considered planar 
(v>>(ux,  vy, O)) with a given velocity profile and temperature across the layer 

v = v(x, g, t) s in  (~z/d), T = --ag + O(x, g, t) s in  (~z/d). (i.i) 

Substitution of (I.i) in the equation of thermogravitational convection in the Boussinesq 
approximation [2] with subsequent integration with respect to z bet~*een 0 and d results in 
two-dimensional equations which take the form after being made dimensionless 

Ov/Ot = - - ( n / 4 ) ( v v ) v  - -  VP + Av - -  D v  + ~Or(O - -  g); (1.2) 

O@/Ot -~ - - ( ~ / 4 ) ( v v ) O  + (AO - -  D O ) / P r  + v~; (1.3) 

VV = 0. (1.4) 

Here Pr = v/X is the Prandtl number; Gr = g~Pa/v 2 , Grashoff number; v, viscosity; X, thermal 
diffusivity; fl, coefficient of thermal expansion; (, a unit vector along the y axis; D 
~212/d2, friction (viscous in (1.2) and thermal in (1.3)) on the side walls of the cavity. 
Selected as units for measuring the length, time, velocity, and temperature are 2, 2z/w, v/2, 
a2. 

The spectral characteristics and investigated on the basis of a hierarchical model of 
turbulent convection constructed in [i] by projecting the equations of motion (1.2) on a 
special basis describing the hierarchy of the vortices and thermics of progressively diminish- 
ing scale 

v = ~ AN. (t) vNn (x, g), @ = ~ C~n (t) ON~ (X, y). 
N,~ N,n 

A singularity of the basis functions is the fact that the functions with different subscript 
N corresponding to the vortex dimension have Fourier transforms that do not overlap in the 
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